The Ramsey Number R(3, K10-e) and Computational Bounds for R(3, G)

نویسندگان

  • Jan Goedgebeur
  • Stanislaw P. Radziszowski
چکیده

Using computer algorithms we establish that the Ramsey number R(3,K10− e) is equal to 37, which solves the smallest open case for Ramsey numbers of this type. We also obtain new upper bounds for the cases of R(3,Kk − e) for 11 ≤ k ≤ 16, and show by construction a new lower bound 55 ≤ R(3,K13 − e). The new upper bounds on R(3,Kk − e) are obtained by using the values and lower bounds on e(3,Kl − e, n) for l ≤ k, where e(3,Kk − e, n) is the minimum number of edges in any triangle-free graph on n vertices without Kk − e in the complement. We complete the computation of the exact values of e(3,Kk − e, n) for all n with k ≤ 10 and for n ≤ 34 with k = 11, and establish many new lower bounds on e(3,Kk − e, n) for higher values of k. Using the maximum triangle-free graph generation method, we determine two other previously unknown Ramsey numbers, namely R(3,K10 −K3 − e) = 31 and R(3,K10 − P3 − e) = 31. For graphs G on 10 vertices, besides G = K10, this leaves 6 open cases of the form R(3, G). The hardest among them appears to be G = K10 − 2K2, for which we establish the bounds 31 ≤ R(3,K10 − 2K2) ≤ 33.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

All Ramsey (2K2,C4)−Minimal Graphs

Let F, G and H be non-empty graphs. The notation F → (G,H) means that if any edge of F is colored by red or blue, then either the red subgraph of F con- tains a graph G or the blue subgraph of F contains a graph H. A graph F (without isolated vertices) is called a Ramsey (G,H)−minimal if F → (G,H) and for every e ∈ E(F), (F − e) 9 (G,H). The set of all Ramsey (G,H)−minimal graphs is denoted by ...

متن کامل

On Some Multicolor Ramsey Numbers

The Ramsey number R(G1, G2, G3) is the smallest positive integer n such that for all 3-colorings of the edges of Kn there is a monochromatic G1 in the first color, G2 in the second color, or G3 in the third color. We study the bounds on various 3-color Ramsey numbers R(G1, G2, G3), where Gi ∈ {K3,K3 + e,K4 − e,K4}. The minimal and maximal combinations of Gi’s correspond to the classical Ramsey ...

متن کامل

Zarankiewicz Numbers and Bipartite Ramsey Numbers

The Zarankiewicz number z(b; s) is the maximum size of a subgraph of Kb,b which does not contain Ks,s as a subgraph. The two-color bipartite Ramsey number b(s, t) is the smallest integer b such that any coloring of the edges of Kb,b with two colors contains a Ks,s in the rst color or a Kt,t in the second color.In this work, we design and exploit a computational method for bounding and computing...

متن کامل

On Some Multicolor Ramsey Numbers Involving $K_3+e$ and $K_4-e$

The Ramsey number R(G1, G2, G3) is the smallest positive integer n such that for all 3-colorings of the edges of Kn there is a monochromatic G1 in the first color, G2 in the second color, or G3 in the third color. We study the bounds on various 3-color Ramsey numbers R(G1, G2, G3), where Gi ∈ {K3,K3 + e,K4 − e,K4}. The minimal and maximal combinations of Gi’s correspond to the classical Ramsey ...

متن کامل

A note on Ramsey numbers with two parameters

1 The Ramsey number R(G1,G2) is the smallest integer p such that for any graph G on p vertices 2 either G contains G1 or G contains G2, where G denotes the complement of G. In this paper, some 3 new bounds with two parameters for the Ramsey number R(G1,G2), under some assumptions, are 4 obtained. Especially, we prove that R(K6 − e, K6) ≤ 116 and R(K6 − e, K7) ≤ 202, these improve 5 the two uppe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 20  شماره 

صفحات  -

تاریخ انتشار 2013